资源类型

期刊论文 477

会议视频 1

年份

2023 49

2022 41

2021 46

2020 35

2019 33

2018 39

2017 25

2016 20

2015 26

2014 28

2013 28

2012 18

2011 15

2010 15

2009 18

2008 14

2007 16

2005 3

2003 1

2002 2

展开 ︾

关键词

吸附 2

提高采收率 2

3D打印 1

Tetrasphaera 1

CO2地下埋存 1

FGR预测 1

H2S 1

MOF基催化剂 1

P4 1

PH3 1

PM2.5脱除 1

SARS 1

不正常航班管理 1

主–客体络合 1

主动回收 1

主动控制 1

二次防御 1

二氧化硫 1

亚铁氰化铜 1

展开 ︾

检索范围:

排序: 展示方式:

Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery

Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1300-7

摘要: Abstract • Powdered resin was employed for ammonia recovery from municipal wastewater. • Powdered resin achievedefficient ammonia removal under various working conditions. • Co-existing cations indicated competitive adsorption of ammonia. • Ammonia was recoveredby two-stage crystallization coupled with ion exchange. Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits. Thus, various technologies for nutrient removal and recovery have been developed. In this paper, powdered ion exchange resin was employed for ammonia removal and recovery from imitated low-strength municipal wastewater. The effects of various working conditions (powdered resin dosage, initial concentration, and pH value) were studied in batch experiments to investigate the feasibility of the approach and to achieve performance optimization. The maximum adsorption capacity determined by the Langmuir model was 44.39 mg/g, which is comparable to traditional ion exchange resin. Further, the effects of co-existing cations (Ca2+, Mg2+, K+) were studied. Based on the above experiments, recovery of ammonia as struvite was successfully achieved by a proposed two-stage crystallization process coupled with a powdered resin ion exchange process. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) results revealed that struvite crystals were successfully gained in alkaline conditions (pH= 10). This research demonstrates that a powdered resin and two-stage crystallization process provide an innovative and promising means for highly efficient and easy recovery from low-strength municipal wastewater.

关键词: Ammonia removal and recovery     Powdered resin     Crystallization process     Struvite     Co-existing cations    

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1807-4

摘要:

● MnO2/PCL composite material (MPCM) enhances ammonia and nitrate removal in CWs.

关键词: Constructed wetland     Nitrogen removal     Manganese redox     Polycaprolactone     Nitrous oxide    

Technologies for pollutant removal and resource recovery from blackwater: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1683-3

摘要:

● Blackwater is the main source of organics and nutrients in domestic wastewater.

关键词: Blackwater     Water-flushing toilet     Sanitation     Nutrient recovery     Water reuse     Sustainable development    

VALORIZATION OF BIOGAS THROUGH SIMULTANEOUS CO AND HS REMOVAL BY RENEWABLE AQUEOUS AMMONIA SOLUTION IN

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 468-478 doi: 10.15302/J-FASE-2022473

摘要:

● Simultaneous H2S and CO2 removal from biogas is studied.

关键词: biomethane     biogas purification     CO2 removal     H2S removal     membrane absorption    

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 308-316 doi: 10.1007/s11705-016-1587-x

摘要: Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia-based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.

关键词: copper recovery     electronic waste     end-of-life products     selective leaching     electrodeposition    

Mercury removal and recovery by immobilized

Meifang CHIEN, Ryo NAKAHATA, Tetsuya ONO, Keisuke MIYAUCHI, Ginro ENDO

《化学科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 192-197 doi: 10.1007/s11705-012-1284-3

摘要: From several mercury removing microorganisms, we selected MB1, which is non-pathogenic, broad-spectrum mercury resistant, mercuric ion reducing, heat tolerant, and spore-forming, as a useful bacterium for bioremediation of mercury pollution. In this study, mercury removal performance of the immobilized MB1 was investigated to develop safe, efficient and stable catalytic bio-agent for mercury bioremediation. The results showed that the alginate gel immobilized MB1 cells efficiently removed 80% of mercury from the solution containing 10 mg/L mercuric chloride within 24 h. These cells still had high activity of mercury removal even after mercuric ion loading was repeated for nine times. The analysis of mercury contents of the alginate beads with and without immobilized MB1 suggested that a large portion of reduced metallic mercury was trapped in the gel beads. It was concluded that the alginate gel immobilized MB1 cells have potential to remove and recover mercury from mercury-containing water.

关键词: mercury removal     immobilized bacteria     alginate gel     bioremediation    

Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars

Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1225-1

摘要: • Orange tree residuals biochar had a better ability to adsorb ammonia. • Modified tea tree residuals biochar had a stronger ability to remove phosphorus. • Partially-modified biochar could remove ammonia and phosphorus at the same time. • The real runoff experiment showed an ammonia nitrogen removal rate of about 80%. • The removal rate of total phosphorus in real runoff experiment was about 95%. Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.

关键词: Biochar     Adsorption     Ammonia removal     Phosphorus removal     Agricultural runoff    

Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1634-z

摘要:

● Backwashing in sand filters with 2-h and 4-h EBCTs was simulated.

关键词: Sand filter     Backwashing     Recovery     Micropollutants     Community composition    

洁净煤技术的新发展——一种火电厂SO2的资源化技术

肖文德,袁渭康

《中国工程科学》 2000年 第2卷 第5期   页码 77-83

摘要:

火电厂烟气脱硫(FGD)是重要的洁净煤技术之一。发达国家主要采用以石灰石为脱硫剂的钙法,投资大,成本高,石膏无利用价值,不适合我国的国情。作者提出了一种以合成氨为基础的新氨法(NADS),回收烟气中的SO2,生产硫酸铵、磷酸铵或硝酸铵化肥,并联产工业浓硫酸,已在2.5万kW机组试验成功,建立了计算机模拟软件。与现有同类技术相比,NADS可节省投资70%以上,减少运行成本70%以上。文中给出了一个20万kW机组和一个30万kW机组的经济分析,NADS的投资分别为6000万元和8000万元,投资回收期分别为8年和5年。该技术在我国具有十分巨大的应用。

关键词: 烟气脱硫     洁净煤技术     二氧化硫     电厂         化肥    

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 104-111 doi: 10.1007/s11705-011-1166-0

摘要: Large amounts of energy are consumed during the manufacturing of cement especially during the calcination process which also emits large amounts of CO . A large part of the energy used in the making of cement is released as waste heat. A process to capture CO by integrating the recovery and utilization of waste heat has been designed. Aspen Plus software was used to calculate the amount of waste heat and the efficiency of energy utilization. The data used in this study was based on a dry process cement plant with a 5-stage preheater and a precalciner with a cement output of 1 Mt/y. According to the calculations: 1) the generating capacity of the waste heat recovery system is 4.9 MW. 2) The overall CO removal rate was as high as 78.5%. 3) The efficiency of energy utilization increased after the cement producing process was retrofitted with this integrated design.

关键词: cement industry     waste heat     recovery     utilization     CO2 removal    

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1194-4

摘要: Eco-friendly IONPs were synthesized through solvothermal method. IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. Removal was >90% in all synthetic and real water samples. >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.

关键词: Adsorption     toxic metal oxide remediation     eco-friendly IONP     Iron oxide     CeO2 removal    

Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled

Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0869-3

摘要: Slightly acidic solutions are a practical means of removing ammonia from air Scrubbed NH accumulates in solution as NH and should be an excellent fertilizer Increased air velocity decreased NH removal and increased NH collection Previous research on wet scrubbers has only studied highly acidic scrubbing solutions because of their high ammonia capture efficiencies; however, the high acidity created practical problems. Lower acidity solutions would reduce corrosion, maintenance, and cost; however, designers may need to use strategies for increasing scrubber effectiveness, such as using lower air velocities. The objective of this study was to determine if a spray scrubber with slightly acidic and higher pH scrubbing solution (pH from 2 to 8) could effectively remove NH from NH laden air (such as animal building exhaust air), and also collect this valuable resource for later use as a fertilizer. A bench-scale spray wet scrubber treated 20 ppmv NH /air mixture in a countercurrent contact chamber. First, the solution pH was varied from 2 to 8 while maintaining constant air velocity at 1.3 m·s . Next, air velocity was increased (2 and 3 m·s ) while solution pH remained constant at pH6. At 1.3 m·s , NH removal efficiencies ranged between 49.0% (pH8) and 84.3% (pH2). This study has shown that slightly acidic scrubbing solutions are a practical means of removing ammonia from air especially if the scrubber is designed to increase collisions between solution droplets and NH molecules. The NH removed from the air was held in solution as NH and accumulates over time so the solution should be an excellent fertilizer.

关键词: Ammonia     Spray wet scrubber     Slightly acidic scrubbing solution     Controlled pH     Removal efficiency    

Organics Recovery from Waste Activated Sludge In-situ Driving Efficient Nitrogen Removal from Mature

Fangzhai Zhang,Shang Ren,Haoran Liang,Zhaozhi Wang,Ying Yan,Jiahui Wang,Yongzhen Peng,

《工程(英文)》 doi: 10.1016/j.eng.2023.03.005

摘要: The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention, but there is currently a shortage of reliable technology. This study presents an innovative biotechnology based on free nitrous acid (FNA) to realize sustainable organics recovery from waste activated sludge (WAS) in-situ, driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification, fermentation, and denitrification process (PN/DN–F/DN). First, ammonia ((1708.5 ± 142.9) mg·L−1) in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification sequencing batch reactor (PN/DN-SBR), with nitrite accumulation ratio of 95.4% ± 2.5%. Then, intermediate effluent (NO2–N = (1196.9 ± 184.2) mg·L−1) of the PN/DN-SBR, along with concentrated WAS (volatile solids (VSs) = (15119.8 ± 2484.2) mg·L−1), is fed into an anoxic reactor for fermentation coupling denitrification process (F/DN-SBR). FNA, the protonated form of nitrite, degrades organics in the WAS to the soluble fraction by the biocidal effect, and the released organics are utilized by denitrifiers to drive NOx reduction. An ultra-fast sludge reduction rate of 4.89 kg·m−3·d−1 and nitrogen removal rate of 0.46 kg·m−3·d−1 were realized in the process. Finally, F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage. After 175 d operation, an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle, with 95.2% nitrogen removal and 53.4% sludge reduction. PN/DN–F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral, specifically, the total benefit in equivalent terms of energy was 291.8 kW·h·t−1 total solid.

关键词: Waste activated sludge     Bioresource recovery     Simultaneous treatment of wastewater and sludge     Mature landfill leachate     Free nitrous acid    

Production of N

Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 589-597 doi: 10.1007/s11783-013-0571-7

摘要: The N O production in two nitrogen removal processes treating domestic wastewater was investigated in laboratory-scale aerobic-anoxic sequencing batch reactors (SBRs). Results showed that N O emission happened in the aerobic phase rather than in the anoxic phase. During the aerobic phase, the nitrogen conversion to N O gas was 27.7% and 36.8% of loss for conventional biologic N-removal process and short-cut biologic N-removal process. The dissolved N O was reduced to N in the anoxic denitrification phase. The N O production rate increased with the increasing of nitrite concentration and ceased when oxidation was terminated. Higher nitrite accumulation resulted in higher N O emission in the short-cut nitrogen removal process. Pulse-wise addition of 20 mg gave rise to 3-fold of N O emission in the conventional N-removal process, while little change happened with 20 mg was added to SBR1.

关键词: conventional N-removal process     N2O     short-cut N-removal process     nitrite accumulation     ammonia- oxidizing bacteria (AOB) denitrification    

A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot

Jianglong YU, Liping CHANG, Fan LI, Kechang XIE

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 529-535 doi: 10.1007/s11705-010-0519-4

摘要: In poly-generation and integrated gasification-combined cycle (IGCC) systems for clean energy conversion, it is essential to remove impurities such as sulfur species from hot coal gases prior to entering the subsequent units. This paper provides a comprehensive review on previous studies on high temperature removal of hydrogen sulfide from high temperature coal gases using iron-based sorbents. A two-step desulphurization process for hot coal gas cleanup is highlighted, which is integrated with direct production of elemental sulfur during regeneration of iron-based sorbents in the primary desulphurization step. Different kinetic modeling approaches for sulfidation and regeneration were compared. Limited research on activated carbon supported sorbents was also briefly summarized.

关键词: hot coal gas cleanup     iron-based sorbents     sulfidation     regeneration     sulphur recovery    

标题 作者 时间 类型 操作

Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery

Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang

期刊论文

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using

期刊论文

Technologies for pollutant removal and resource recovery from blackwater: a review

期刊论文

VALORIZATION OF BIOGAS THROUGH SIMULTANEOUS CO AND HS REMOVAL BY RENEWABLE AQUEOUS AMMONIA SOLUTION IN

期刊论文

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang

期刊论文

Mercury removal and recovery by immobilized

Meifang CHIEN, Ryo NAKAHATA, Tetsuya ONO, Keisuke MIYAUCHI, Ginro ENDO

期刊论文

Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars

Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev

期刊论文

Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand

期刊论文

洁净煤技术的新发展——一种火电厂SO2的资源化技术

肖文德,袁渭康

期刊论文

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

期刊论文

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

期刊论文

Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled

Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao

期刊论文

Organics Recovery from Waste Activated Sludge In-situ Driving Efficient Nitrogen Removal from Mature

Fangzhai Zhang,Shang Ren,Haoran Liang,Zhaozhi Wang,Ying Yan,Jiahui Wang,Yongzhen Peng,

期刊论文

Production of N

Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG

期刊论文

A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot

Jianglong YU, Liping CHANG, Fan LI, Kechang XIE

期刊论文